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Abstract—The ability of an agent to self-localise is crucial to
any autonomous task where mobility is required. A common
set of techniques solving the localisation problem involve the
deployment of active beacons or landmarks, which eliminate
problems related to landmark detection and association. The use
of beacons providing range-only estimates using time-of-flight
measurements is one such approach. Here, range measurements
are used in trilateration or range-only SLAM algorithms to
provide an accurate measure of a robot’s position. Unfortunately,
the potential error in a position estimate is related to the relative
geometry of the beacons, and poorly placed beacons can result
in extremely inaccurate location estimates. This paper presents
an optimisation technique for finding optimal beacon positions,
so as to minimise the mean positional uncertainty in a given
environment. Our work shows that this approach represents
an improvement on previous approaches because the resultant
uncertainty map can be used as a heuristic to improve path
planning algorithms.

I. INTRODUCTION

An accurate estimate of a robot’s position is typically
required prior to any meaningful interaction with an en-
vironment. As a result, methods with which a robot can
be localised are of great interest to the robotics research
community. Traditional approaches to localisation require a
map, but in many environments this is unavailable. This has
led to investigation into a number of alternative localisation
techniques. These include the widely used global positioning
system (GPS), simultaneous localisation and mapping (SLAM)
approaches and inertial navigation systems. Unfortunately,
SLAM approaches that do not make use of fiducials or distinct
landmarks often lack the robust performance required in indus-
trial settings, while the cost and drift associated with inertial
navigation systems typically make them infeasible. Due to this,
active landmarks, which eliminate common problems related
to landmark detection and association, are often deployed in
industrial work areas.

Beacons providing time-of-flight measurements are fre-
quently used as active landmarks. In this case, the position
of a receiver is estimated using measurements of the ranges to
respective beacons. Approaches that allow for this include tri-
lateration, multilateration and range-only SLAM. Trilateration
is a method of determining the absolute or relative locations
of points by measurement of distances, using the geometry
of circles, spheres or triangles. Multilateration, also known as

hyperbolic positioning, refers to the process of locating an
object by accurately computing the time difference of arrival
of signals emitted by three or more receivers. Range-only
SLAM, discussed in detail in [1], [2] and [3], is a localisation
approach that typically makes use of active beacons to acquire
range measurements. Trilateration or multilateration is used
to determine an initial estimate of the robot’s position and
a filtering algorithm that integrates range measurements from
multiple beacons over time is then applied. Range measure-
ments are typically noisy, especially in an indoor environment
where interference and multipath affects signal quality, so this
integration result tends to drift over time.

In all cases, the relative geometry of the beacons affects
the accuracy of localisation. Thus, a strategy for the optimal
placement of beacons is required. This paper presents an
optimisation technique for beacon placement that minimises
the mean positional uncertainty in an environment.

Optimal range-only beacon placement strategies have been
applied previously. The authors of [4] developed a nonlinear
mixed-integer programming model to minimise the number
of beacons covering an environment, given the requirement
that at least three beacons must be within a specified range of
critical points in the design area. Unfortunately, this approach
does not take positional uncertainty estimates into account and
could result in beacon configurations with the potential for
large positional errors in specific positions.

In [5], a diversified local search strategy to find the optimal
number and position of beacons for a given environment was
applied. The authors aimed to find an optimal solution for
beacon positioning with respect to three conditions; a minimal
number of beacons must be used, the percentage of the area
covered by at least three beacons must be maximised, and the
percentage of area covered by admissible geometric dilution
of precision (GDOP) values must be maximised. GDOP is
an uncertainty scaling parameter dependent on the relative
geometry of beacons, which was originally developed for
global positioning systems.

GDOP is defined as the square root of the sum of the
variances in position error, divided by the average variance
in beacon range measurements [6]. This measure has two
primary flaws. Firstly, it fails to take off-diagonal covariance
in position estimates into account, and assumes that beacon
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variance is the same for all beacons. The latter assumption is
suitable for GPS, where satellites are so far away that they can
be assumed to be equidistant from the receiver, but this does
not necessarily hold for indoor beacons, where variances are
typically highly dependent on range. Secondly, the exclusion
of off-diagonal terms in the dilution of precision calculation
fails to accurately measure the potential error in estimates
for certain beacon configurations. The work presented here
provides a more suitable metric for the positional uncertainty
associated with a given beacon configuration, which addresses
the failings of the GDOP metric.

The work of [5] makes use of a diversified search strategy,
where movements out of local minima are automated. At
present, our approach relies on manual intervention to avoid
local minima. In addition, our method does not find the
minimum number of beacons required to achieve a specified
certainty over the intended environment. However, our ap-
proach does produce a resultant uncertainty map, which can
be used as a heuristic to improve path planning. Our work
also highlights the flaws of applying a standard least squares
solution to estimate position using all detected beacons, which
may result in a sub-optimal level of positional uncertainty.

This paper is organised as follows. In Section II, trilateration
and an approach to finding an optimal set of beacon positions
for a given environment is discussed. Section III provides a
discussion on the primary benefit of this approach to practical
situations, the use of the resultant uncertainty map as an
aid in path planning. This is followed by a discussion on
the relevance of the beacon positions if range-only SLAM
is used in the environment. Experimental results showing
uncertainty maps for beacons during the optimisation process
are provided in Section IV, together with results of an A*
planning algorithm using the uncertainty maps as a heuristic.
Finally, conclusions and a discussion on future work are
provided in Section V.

II. METHODOLOGY

The beacon placement strategy presented here involves the
minimisation of the average uncertainty in a given environ-
ment. This requires knowledge of the effects of beacon noise
on a position estimate. The following section provides trilater-
ation equations which can be used to estimate receiver position
when the locations of beacons are known. This is followed
by a discussion on a suitable noise model for beacons, and
a derivation of the effects of this uncertainty on a position
estimate. Finally, we show how the uncertainty in a position
measurement can be used to determine an optimal set of
beacon locations.

A. Trilateration

Trilateration is a means of determining the absolute location
of a point, using the geometry of circles or spheres. Assuming
at least four range measurements are obtained from beacons
at known locations, the location of a receiver in 3D space can
be determined by finding the intersections of the four spheres.
This process is illustrated for a single plane in 3D space in

Fig. 1. A graphical illustration of the trilateration process in 2D.

Fig. 1. The trilateration solution can be generalised to multiple
beacons as follows. Assuming N beacons, with i denoting the
i-th beacon in a set, the i-th range measurement for a given
receiver position in 3D Cartesian space (x, y, z) is calculated
as

ri
2 = (x− xi)2

+ (y − yi)2
+ (z − zi)2

. (1)

Here, (xi, yi, zi) denotes the position of the i-th beacon in
Cartesian space. Expanding (1), and substituting t = x2 +
y2 + z2 and Si = xi

2 + yi
2 + zi

2 provides

Si − ri2 = 2xxi + 2yyi + 2zzi − t. (2)

Assuming N beacons, (2) can be formulated as a least squares
problem, Ax = B, 2x1 2y1 2z1 −1

...
...

...
...

2xN 2yN 2zN −1



x
y
z
t

 =

 S1 − r1
2

...
SN − rN 2

 (3)

and the receiver position is easily solved as x = A†B, with
A† the Moore-Penrose pseudo-inverse of A. Hereafter, the left
most matrix of (3) will be referred to as A.

B. Beacon Noise Model

The optimisation approach to beacon placement presented
here relies on the propagation of uncertainty in beacon mea-
surements through the trilateration equations. However, before
this can be completed, knowledge of the mean uncertainty
for a given beacon measurement is required. Most range-
only beacons in use rely on some form of time-of-flight
measurement to estimate range. This approach suffers from
attenuation effects and multi-path. As a result, errors in range
estimate become more pronounced as the distance between
beacon and receiver increases. Assuming each beacon estimate
has zero-mean Gaussian noise, a beacon noise model that
accounts for this has a standard deviation in error given by

σ =

{
σcr

2 rmin ≤ r ≤ rmax

∞ otherwise
, (4)

where σc is a tuning constant for specific beacons, and r
is the distance between receiver and beacon. In practice, a
suitable value for σc is obtained through experimentation and
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by characterising the error in a set of beacons. rmin and
rmax denote the respective minimum and maximum ranges
achievable by the beacons.

C. Uncertainty Propagation in Trilateration

The noise model of (4) is now used to obtain the uncertainty
in a receiver position estimate by propagating the model
variance σ2 through the trilateration equations of (3).

Re-writing (3), to include Gaussian noise variables εi for
the i-th range estimate provides

x
y
z
t

 = A†

 S1 − (r1 + ε1)
2

...
SN − (rN + εN )

2

 . (5)

Using Taylor series expansion to linearise the right hand side
of (5) about the zero-mean Gaussian variables εi then results
in 

x
y
z
t

 = A†

 S1 − r1
2 − 2r1ε1
...

SN − rN 2 − 2rN εN

 . (6)

Given a linear system Y = TX, the transform of the
covariance of Gaussian random variables passed through the
system is given by Cov [Y] = T Cov [X]TT. Thus, the
covariance for a given receiver position can be estimated from
a diagonal matrix of beacon range variances using

Cov


x
y
z
t

 = T

σ
2
1 . . . 0
...

. . . 0
0 0 σ2

N

TT, (7)

where

T = A†

−2r1 . . . 0
...

. . . 0
0 0 −2rN

 . (8)

At this point, it is important to highlight a crucial point
of interest regarding the potential uncertainty in an estimated
receiver position for a given set of beacons. The transform
T is range dependent, which means that the uncertainty in
receiver position is not only dependent on the relative beacon
geometry, but also on the distance to beacons. Intuitively, it
would seem that the addition of beacons to a given area will
always improve a position estimate, but this is not always true.
In many cases, the addition of a beacon to the least squares
problem will result in an increased uncertainty and a greater
chance of error in a position estimate.

In order to remedy this, we recommend that the uncertain-
ties for all potential combinations of beacons are evaluated,
and that the set of beacons providing the lowest positional
uncertainty is selected. An even better approach towards
minimising uncertainty for a given beacon configuration would
be to use a weighted least squares position solution, but this
is left as future work, and its exclusion does not affect the
optimisation process described here.

D. Optimisation Process

Given the uncertainty estimate of (7), the optimisation
process for finding the best beacon positions for a given
environment can now be discussed. For a given position, only
the upper left 3 × 3 elements of the covariance matrix in
(7) are of interest, as they contain all positional uncertainty
information. Ideally, these elements should be combined to
form one quality metric relating to the potential error in a
position estimate. We now describe a suitable metric, which
relies on principal component analysis.

Principal component analysis (PCA), first described in [7],
is a dimensionality reduction technique that transforms data
into a coordinate system in which the largest variances in
the data lie on coordinate axes termed principal components.
Mathematically, the magnitudes of the principal components
are the square roots of the eigenvalues of a covariance matrix.
Thus, by calculating the eigenvalues of the upper left 3 × 3
elements in (7), the largest orthogonal variances for a given
position estimate are obtained. A suitable error metric using
these rotated variances is the square root of the sum of these
variances:

ex,y,z =

√√√√√ 3∑
k=1

Eig

Cov

xy
z

. (9)

This can be considered as a measure of the Euclidean distance
between the position estimate (x, y, z) and the largest orthogo-
nal standard deviations in 3D space, and is an improvement on
the GDOP metric as it considers both off-diagonal covariance
terms and individual beacon noise.

The beacon positioning problem is now formulated as an
optimisation problem using this error metric,

[x̄i, ȳi, z̄i] = argmin
x̄i,ȳi,z̄i

E [ex,y,z] (10)

where (x, y, z) ∈ S, the bounds on a given environment, and
(x̄i, ȳi, z̄i) denote vectors containing the respective beacon co-
ordinates. In other words, choose the set of beacon positions so
as to minimise the mean, denoted E [ . ], positional uncertainty
for a given environment, S. Almost any nonlinear optimisation
algorithm could be applied to solve this problem, but we
selected the Nelder-Mead [8] downhill simplex method due
to its applicability to solving highly non-linear optimisation
problems. Initial beacon positions are selected at random or by
a user, and the Nelder-Mead algorithm converges to a locally
optimal solution. A suitable set of beacon positions is obtained
by repeating the Nelder-Mead search a number of times.

In practice, obstacles such as walls do not allow for range
measurements to be made at all locations. In order to ac-
count for this, our algorithm assumes that range measure-
ments for respective beacons are only available if there is
an unobstructed line-of-sight between the beacon and receiver
position. The effects of multi-path are assumed to be dealt
with by increased attenuation thresholds on the receiver, at
the expense of additional beacons. In addition, we ensure that
the minimum uncertainty is obtained for a given position and
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(a) Iteration 1 (b) Iteration 1000

Fig. 2. Convergence of beacons to a minimum uncertainty map with no
obstacles. Beacons are denoted by green circles, while the uncertainty map is
a colour based representation of the uncertainty in an environment, with blue
representing low levels of uncertainty, and red greater uncertainty.

beacon configuration by selecting the best set of beacons for
the computation, as outlined in Section II-C.

Unfortunately, the optimisation process described here is
extremely slow. In order to improve the speed of the process,
a staged search for optimum beacon positions is used. Initially,
the search for the best beacon locations occurs on an extremely
course grid representation of the environment. The results of
this search are then used to seed a search on a more densely
populated grid, which allows for the refinement of beacon
positions.

III. DISCUSSION

A. Uncertainty as a Path Planning Heuristic

The optimisation process of Section II-D produces a set
of beacon positions and an uncertainty map for the intended
operational environment. This uncertainty map is of particular
importance as it can be used as an aid in path planning.
Ideally, a path between two points should be selected so that
the uncertainty in position along the path is minimised. This
would reduce the chances of negative effects due to potential
localisation errors when a mobile robot is navigating. We now
show how the uncertainty map can be used as a heuristic for
the popular A* path planning algorithm.

The A* search algorithm, first described in [9], is a com-
monly used extension of the Dijkstra algorithm [10] that allows
for the shortest route between two points or nodes on a graph
to be found, provided that the two nodes are connected in some
manner. Given a start location, the algorithm tests connected
nodes in an attempt to find the lowest cost route to a goal.
The cost at each node is evaluated as the sum of the total
cost to reach the node and a heuristic measure indicating an
estimated cost to reach the goal. A priority queue of the nodes
to be traversed is maintained, and termed the open set. As
the total cost of reaching the goal via a node decreases, the
nodes priority increases. At each iteration of the algorithm,
the lowest cost node is removed, and added to a closed set.
This process continues until the lowest total cost path reaching
a goal is obtained, at which point the desired route is found
by working backwards from the goal node using information
contained in the closed set.

Traditionally, the heuristic used by the A* algorithm for
mobile robot path planning is the Euclidean distance between
an accessed node and a goal. This results in the shortest
route to a goal being determined. The cost of traversing to
a node is typically the distance between nodes. However, by
replacing this cost with the uncertainty metric at a node, and
the heuristic with the maximum map uncertainty metric scaled
by the distance between an accessed node and a goal, a path
that minimises the potential for errors in localisation will be
obtained. This path may not be ideal from the perspective of
time taken to reach the goal however, and a better approach
may be to replace the heuristic with the Euclidean distance to
the goal. This ensures that the path to the goal is near optimal
in terms of shortest distance travelled, but still takes potential
uncertainty into account at each iteration.

B. Applicability to Range-only SLAM

In many cases trilateration is not the only approach used to
estimate receiver position, and a position fusion algorithm is
applied. This is especially true for mobile robot localisation,
where vehicle odometry is frequently used to improve a
position estimate. This process is typically termed range-only
SLAM. Care must be taken to discriminate between the true
range-only SLAM problem and one where beacon positions
are known a-priori.

In the latter case, localisation occurs in a global frame
since the positions of beacons are known. Thus, the SLAM
problem is reduced to one of localisation, and the combination
of odometry and measurement information merely serves to
improve the uncertainty in a position estimate. This is simply
a case of sensor fusion, and as a result the beacon placement
strategy discussed here is still optimal.

However, for true SLAM, where the positions of beacons
are not known, and need to be estimated continuously, the
beacon placement strategy described here may not be optimal.
In the case of true SLAM, beacon and robot positions are
estimated in a relative frame. As a result, uncertainty in
position is subject to drift and bounded at infinity. Positional
uncertainty will continue to increase over time, unless loop
closure is applied. Loop closure refers to the adjustment of
position estimates and uncertainties when a robot returns to a
previously visited location, and is an essential component in
SLAM algorithms if positional uncertainty is to be bound.

The importance of loop closure cannot be overstated. The
authors of [11] showed that errors in robot mapping can
be reduced dramatically by using a navigation strategy that
alternates between exploring and returning to known points
for loop closure. The significance of loop closure in a SLAM
algorithm implies that a better beacon configuration would be
one where the uncertainty in a position estimate is minimised
at positions where loop closure is likely to occur, such as
at frequently traversed intersections. However, the uncertainty
map produced by the optimisation algorithm described here
could be used to plan returns to areas of low localisation
uncertainty, which would allow for more reliable loop closure.
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(a) Environmental representation (b) Iteration 1 (c) Iteration 3500

(d) Iteration 3713 (e) Iteration 4035 (f) Iteration 10000

Fig. 3. Convergence of beacons to a minimum uncertainty map. Beacons are denoted by green circles, while the uncertainty map is a colour based
representation of the uncertainty in an environment, with blue representing low levels of uncertainty, and red greater uncertainty.

IV. EXPERIMENTAL RESULTS

A. Beacon Positioning

Experimental results of our beacon placement strategy are
now presented. We restrict our analysis to two dimensions, so
as to aid understanding, but it is important to note that the
algorithms presented here are applicable to three dimensional
problems. Fig. 2 shows a graphical representation of a sample
uncertainty map at various stages during an optimisation
process for a set of beacons with σc = 0.006, when no
obstacles restrict the beacon line-of-sight. The error metric
has units of metres, and the environment considered is square
with an area of 100 m2. Beacons are denoted by green circles.
Initially, 4 beacons were placed at random, and the average
error metric was quite large. However, this decreased rapidly,
with beacon locations found after 1000 iterations resulting in
a mean positional uncertainty of 0.44 m, approximately 14%
lower than the 0.51 m initially obtained.

Fig. 3 shows a graphical representation of a sample uncer-
tainty map at various stages during an optimisation process
for a set of beacons with σc = 0.006, when 5 obstacles
restrict beacon line-of-sights. Once more, the environment
considered is square, with an area of 100 m2, and beacons
are denoted by green circles. In this experiment, 8 beacons
were placed at random, as a greater number of beacons are
required to counter the obstructions due to obstacles. As

before, the mean uncertainty decreased rapidly during the
position optimisation. However, the Nelder-Mead optimisation
algorithm occasionally found local minima, which required
that the algorithm be restarted with beacon positions adjusted
by the user. This occurred twice, between iterations 1 and
3500, and again between iterations 3713 and 4035.

Initially, the mean uncertainty in position was 0.90 m, which
was reduced to 0.40 m, an impressive reduction of approxi-
mately 65%. It is important to note that this average excludes
the uncertainty within obstacles. Obstacles have extremely
large positional uncertainty because no knowledge of positions
within obstacles can be found. The final beacon positions
provide lower uncertainty behind obstacles, but this comes at
the expense of greater uncertainty in other areas. In practice,
this drop in certainty can be limited by using the median of the
uncertainty map instead of the mean as a cost function, since
this will result in outliers affecting the optimisation problem
to a lesser extent.

B. Path Planning

Fig. 4 shows the results of three variations of an A* path
planning algorithm, adapted to find a path between two goals,
using a traditional shortest distance metric, a combination of a
minimum uncertainty cost and maximum uncertainty heuristic,
and a mixture of a minimum uncertainty cost with a Euclidean
distance heuristic. These three cost functions were discussed
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in Section III-A.
As expected, using the shortest distance metric in an A* al-

gorithm resulted in the shortest distance path between the start
and target nodes being found. A metric based solely on the
uncertainty in the environment found a path between the goals
that, although minimising uncertainty, is extremely lengthy. As
predicted, the third path, found using an uncertainty cost to
transition between points, but a Euclidean distance heuristic
to the goal, resulted in a much shorter path, but allowed for
variation about the path which reduced the uncertainty in each
A* iteration. In practice, we would recommend the use of this
planning strategy.

V. CONCLUSION

This work has presented an optimisation process for the
placement of range-only localisation beacons. Beacons are
placed so as to minimise the mean uncertainty or variance
in a position measurement over a given environment, for a
given beacon’s Gaussian noise model. This paper has shown
how the uncertainty in beacon range measurements propagates
through trilateration equations, and affects the receiver’s posi-
tion estimate.

Of crucial importance is the fact that adding beacons does
not always improve the uncertainty in a position estimate,
since errors in range measurements are dependent on the
distance to beacons. We have provided a method for selecting
the best set of beacons to estimate position at a given point.

The optimisation algorithm approach to beacon placement is
able to improve the mean uncertainty in an environment and is
suitable for use in selecting beacon locations for an industrial
application. Unfortunately, the optimisation problem presented
here is extremely computationally intensive and as a result
quite slow. The use of alternative optimisation algorithms and
modification of the error metric so as to improve speed is a
matter of future work.

Target

 

 

Shortest path

Mixed cost path

Lowest uncertainty path

Start

Fig. 4. A set of sample paths between two points in an uncertainty map.
The path planned using a mixed metric produced the most feasible path, while
still allowing for navigation with reduced uncertainty.

While the beacon configurations found using the optimi-
sation approach discussed here may not be optimal if a true
range-only SLAM algorithm is employed, this is not really
of consequence. The design process described here implicitly
requires that knowledge of beacon positions is known a-priori,
and a range-only SLAM algorithm is not really suited to
solving a localisation problem in this form. A much better
approach is that of sensor fusion, in which case the method
presented here is suitable for selecting beacon positions.

The primary benefit of the uncertainty-based beacon place-
ment strategy presented here is the use of the uncertainty
map for mobile robot planning. This paper has shown how
the localisation uncertainty in an area can be used to plan
paths that minimise the chances of positional errors affecting
navigation.

The approach presented here has only considered the op-
timal placement of a constant number of beacons. Future
work involves the adaption of the approach to select the
optimal number and position of beacons in order to provide
a desired level of certainty in a given environment. The
increased weighting of the uncertainty of areas where accurate
localisation is essential is another planned addition to the
beacon placement strategy presented here, as this will allow
even greater control over the localisation errors in a given
environment.
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